
1

Lessons Learned in Adapting a Software System to a Micro
Computer

ABSTRACT: A system was developed in a laboratory on a desktop computer to
evaluate armor health. The system uses sensors embedded in the armor which
causes the armor to vibrate. There are subtle changes in the vibration pattern if the
armor has been damaged. The system uses these changes to diagnose armor health.
The goal of the team was to take this application and transfer it to the field where it
would be embedded in a portable system that could be readily used by soldiers.

The original application was developed on a desktop computer that had a powerful
processor, 4 GB of memory and a standard operating system. The challenge was to
take this application that had essentially unlimited resources (disk, memory and
processor) and modify it to run on a microcontroller which has rather limited
resources including no disk, no operating system, very little memory, and a much
slower processor. There is no explicit general method that will work for every
application, however it is hoped that the steps described below will provide a
general framework for the process and some insight as to how to approach the task.

The Steps Involved in the Process

1. If the application has several main programs, start the conversion efforts
with the simplest main program first.

2. Start with the source code for the application and reduce all array sizes to the
minimum necessary to run the application.

3. Replace double precision data declarations with single precision data
declarations wherever possible. This requires careful checking of the
application to make sure that the required accuracy of the computations is
maintained even with the reduced precision.

4. Remove all standard file input/output references from the source code while
converting the application for the micro. Replace these references with
appropriate workarounds.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
05 FEB 2013

2. REPORT TYPE
Technical Report

3. DATES COVERED
 01-01-2012 to 31-12-2012

4. TITLE AND SUBTITLE
Lessons Learned in Adapting a Software System to a Micro Computer

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Thomas Meitzler; Thomas Reynold; Samuel Ebenstein

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
US Army RDECOM- TARDEC,RDTA-RTI,6501 East Eleven Mile
Rd,Warren,Mi,48397-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER
#23658

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army TARDEC, Ground System Survivability, 6501 East Eleven
Mile Rd, Warren, Mi, 48397-5000

10. SPONSOR/MONITOR’S ACRONYM(S)
TARDEC

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)
#23658

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
A system was developed in a laboratory on a desktop computer to evaluate armor health. The system uses
sensors embedded in the armor which causes the armor to vibrate. There are subtle changes in the
vibration pattern if the armor has been damaged. The system uses these changes to diagnose armor health.
The goal of the team was to take this application and transfer it to the field where it would be embedded in
a portable system that could be readily used by soldiers.

15. SUBJECT TERMS
microprocessor, desktop computer, algoritm modification

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

Public Release

18. NUMBER
OF PAGES

13

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2

5. Modify the algorithms used if necessary to reduce the memory requirements
so that the application will run on the micro.

The steps above will be illustrated by applying them to a practical example.

Description of the Example Application

The example we use measures armor health. Sensors are placed in armor and these
sensors are subject to ultrasonic vibrations from 1 to 200 kHz by 1 kHz increments.
The responses of the armor plate to these vibrations are collected, and the average
and standard deviations of the strength of these vibrations are stored in a database.
When the responses to the healthy armor plate are collected over time, random
errors tend to cancel each other, and the means and standard deviations of the
responses can be used to create a database which is called the “fingerprint
database”. This database represents the “ideal” behavior of the healthy armor plate
and it can be used at some future time to check the armor. A data file is collected
and compared to the database to determine armor health. If the data file differs
substantially from the fingerprint database, it indicates that the armor has been
damaged. The system was developed so that it has two main programs, the
database builder and the compare function which is used to compare a new data
file to the database. The main programs are quite simple, and most of the
computation is done in a software library which is common to both main programs.
The compare function is much simpler than the database builder, so we shall
consider it first.

The Simplest Main Program: The Compare System

The compare system uses limited memory since it does a calculation using an input
of 200 data points and a database of 400 data values (200 averages and 200
standard deviations). The program is written in the C programming language. The
standard method for developing an application for the micro is to first develop it on
a pc. The application is then downloaded to the micro for testing. The program on
the pc for developing micro applications is called a cross compiler. After
successful program execution on the pc, the program is downloaded to the micro

3

and run there to test for any problems. The first step was to develop a C program
on the pc that implemented the compare system without using any data i/o that
would meet the micro’s data memory and program memory limitations. The pc
contains only one kind of memory and it can be used for either programs or data,
while the micro contains two kinds of memory, SRAM for programs and flash that
can be used for data.

Reduce Array Sizes

Comparison of Memory Resources Available on Micro and PC

Computer type Flash Memory for Micro
(Megabytes)

For data storage

SRAM (Megabytes)

For programs

Windows PC Can use all of SRAM for
programs or data (3250)

3250

Micro 0.262 0.065

Table 1: Comparison of Memory Resources

The first step was to reduce array sizes where they are much larger than actually
necessary. For example if an array has dimension 1000 to accommodate 1000 files,
but more than 100 files are hardly ever used, the array size can be reduced from
1000 to 100 thereby reducing the memory requirements by 90%.

Due to the fact that current desktop computers have essentially unlimited memory
(a minimum of at least 4GB on most computers) programmers have become very
generous with allocating array sizes. The result is that a program that uses an array
of size 100 may have an array dimensioned as 1000. So the allocation statement

float data[1000];

can be replaced by

4

float data[100];

Replace Double Precision Declarations with Single Precision Declarations

As a general rule most mathematical computations are done in double precision to
provide greater accuracy, however this is often wasteful. Most of the time float
variables can be used instead of double precision, thus saving half of the space
since a double precision variable is 8 bytes as opposed to 4 bytes for a float
variable. The following method is a simple way of running a program in either
single or double precision without major code changes. Instead of declaring
floating point variables as float (single precision) or double (double precision),
declare them as real, for example

REAL x[100],y[100];

where the type REAL is defined in a parameter include file as follows

#define REAL float

or

 #define REAL double

This provides a simple way to change one statement and recompile the project and
see the effect upon the results. If there are significant differences, the source code
must be carefully examined and some variables may need the extra precision. Most
of the double precision variables were replaced with single precision variables.

Over 300 data files were evaluated with both single and double precision versions
of the compare program on the laboratory computer with the following results.

5

Program type Number of
Files
Evaluated

Number of
Files with
Same Results
(to 5 decimal
places)

Number of
Files with
Different
Results

Maximum
Numerical

Difference

Double
Precision

379 335 42 0.0001

Single
Precision

379 335 42 0.0001

Table 2: Comparison of Single and Double Precision Calculations

A Case where Double Precision is Necessary

A rather simple case where double precision is critical is in the calculation of the
standard deviation of a set of numbers. There are 2 common algorithms that can be
used to compute the standard deviation. The first algorithm has the following steps:

First algorithm

1. Compute the average of the data and store it in a variable ave.

2. Then subtract the average value from all the data elements, and square the
values, and take the square root of the sum.

3. √(1/n∑ (𝑖=𝑛
𝑖=1 Xi-ave)2) where Xi

 are the data points. This formula for
calculating the standard deviation doesn’t usually require the use of double
precision. It does however require processing the data elements twice, once
to compute the average and once for computing the standard deviation. It
also is very wasteful in storage since an array of size n or more is needed
for storing the data points.

6

Second algorithm

1. Compute the average of the data as follows
2. Ave =∑ 1/𝑛𝑖=𝑛

𝑖=1 (Xi)
3. Simultaneously compute the square of the data.
4. 𝑆𝑞𝑢𝑎𝑟𝑒 = ∑ 1/𝑛𝑖=𝑛

𝑖=1 (Xi)2
5. Then the standard deviation is given by √(square-ave2)

This method doesn’t require much storage since it only uses two accumulators to
sum up the data values and the square of the values, but it more susceptible to
numerical errors.

Consider the following situation where the standard deviation of 500 randomly
selected data points where chosen between the interval of 500 and 501.

Differences in Computing the Standard Deviation using the Two Algorithms

 First Algorithm Second Algorithm
Single precision 0.2876 0.4231
Double precision 0.2876 0.2876

Table 3: Example of Case where Double Precision is Required

The only difference in storage was that the two accumulators for the variables in
steps 2 and 4 above were in double precision instead of single precision for a
difference of 8 bytes of additional storage required for the double precision data
type.

7

Developing the code for the micro on the desktop computer

Before compiling the code with the cross compiler for the micro, it is useful to do
as much of the necessary modifications as possible on the pc. The reason for this is
that it is much simpler and faster to modify and test an application on the pc than
the micro.

There are several stages in this effort.

Eliminating Unnecessary Routines

The compare application consists of a main program and it calls a library with 64
subroutines. The library contains many subroutines that were used by various main
programs, but most of them are not needed by the compare program. For example
the library had several routines to read several types of data files including ASCII
and binary files. However since the micro doesn’t have a file system, no actual
read routines were needed. By eliminating all unnecessary routines and combining
some routines, the number of required subroutines was reduced to 6. To preserve
the functionality of the application it was necessary to replace a read routine with
something that could get the data to the application.

The original read code was a typical routine that had as input a file name and it
returned a vector of data values as output, and the number of data values. It was
replaced with the following C code which emulates a read routine:

void ascii_read(float *Vector, int *num_data)

{

Vector[1]= 0.056880;

Vector[2]= 0.067620;

…

Vector[200]=0.041560;

8

*num_data=200;

}

 Total Number of Library
Routines

Routines Added to
Replace I/O Function

Laboratory Computer 64 0

Micro Computer 6 2

Table 4: Simplifying the Library

Testing the Application Designed for the Micro Computer

The revised program was compiled and executed on the pc and it gave the same
results as the original program. The next step was to cross compile the program for
the micro. The following image from the laboratory computer shows that micro
computer version was successfully generated. The code was then uploaded to the
micro where it successfully executed and gave the same numerical result as on the
pc.

9

Figure 5: Output from the Cross Compiler for the Micro

As is shown in Figure 5, only a small amount of Flash and SRAM resources were
used for this application. The next question is will the database builder application
fit and run on the micro?

The More Complicated Main Program: The Database Builder

This program is called the fingerprint program because the database is sort of like a
“fingerprint” of the armor panel that it represents. One of the principles of
statistical theory is that by repeating an experiment over time, random errors will
tend to cancel out each other. This requires the collection of data over time and
under varying ambient conditions. Collecting and storing day over time requires
the existence of a file system and a clock, but not an operating system. Fortunately
a file system is commercially available for the micro that only requires 1300 bytes
of storage. The data can be stored on a compact flash or sd card either of which can
be integrated into the system hardware. To build a representative fingerprint
database can require the collection of several hundred data files. The compact flash
card has more than enough space to store these data files since each data file

10

contains only 804 bytes of data. One thousand data files would only require 0.8
megabytes of data, and a common compact flash card can hold 32 GB of data.
However the micro doesn’t have sufficient storage to hold this data in core for
processing. The solution to this problem is to use random sampling and choose a
small subset of the total number of data files for processing. The following table
compares the results of using the original program and the one that was rewritten
for the micro.

Program used in
creating database

Average Value Standard Deviation

Original (150 files) 7.47*10-3

3.08*10-3

Micro version (15 files) 9.79*10-1 2.89*10-3

Figure 6: Comparison of the main database values from the 2 versions of the
program

The table above compares the database values from the two versions of the
program, but it doesn’t really give much of an idea as to the ability of the micro
version to produce results that are comparable to the original version. A better way
to compare the two versions is to see graphically depict the metric values using
both of the two databases. Figure 7 shows this comparison. In general the values
are similar, although some of the values using the micro version are twice as large
as those for the original version. The really critical test however, is can the micro
version detect changes in armor health as well as the original version? Figure 8
shows that both versions are able to detect changes with similar precision. In fact
the scores from the micro version are slightly higher than those for the original
version. The average score for the original version is slightly greater than 1900,
while the score for the micro version is about 2600.

11

12

Trial
Number

Using database
derived from 150
files

Using database
derived from 15
files

1 1911.88 2600.283

2 1911.55 2597.47

3 1912.12 2598.15

4 1912.25 2598.04

5 1913.52 2599.72

6 1911.57 2597.90

7 1915.28 2604.73

8 1914.57 2603.23

9 1915.03 2603.42

10 1914.34 2602.11

13

